
International Journal of Research in Advent Technology, Vol.2, No.4, April 2014
E-ISSN: 2321-9637

329

A Dynamic Approach for Load Balancing using Clusters
Shweta Rajani 1, Renu Bagoria 2

Computer Science1,2,Global Technical Campus, Jaipur1,JaganNath University, Jaipur2
Email: shwetarajani28@yahoo.in1

Abstract-Rapid increase and advancement in the use of computer and internet has increased the demand for
resource sharing since it has increased the amount of load across internet to a vast level. This situation can be
handled either by increasing the size of servers or by effectively distributing the workload among multiple servers.
The paper discusses various techniques of load balancing and a newly proposed design and algorithm with a
clustered approach to perform dynamic load balancing.

Index Terms-Load Balancing; Static Load Balancing; Dynamic Load Balancing; Issues in designing load balancing
algorithms; clustered approach.

1. INTRODUCTION

Load Balancing refers to distributing the processes to
the nodes in the system so as to equalize the
workload among the nodes. Load balancing
algorithm tries to balance the total system load by
transparently transferring the workload from heavily
loaded nodes to lightly loaded nodes to ensure good
overall performance.A Load Balancer is a software
program which listens to the port where external
clients connect to access services[1]. A load Balancer
may be combined with a decision making system
itself or it should report the load conditions to one or
more back-end servers to make balancing decision.
However, the basic goal of all load balancing
algorithms is to maximum total system throughput.

Load Balancing Technique has several advantages:

� Increases the performance of the system
� Reduces mean job response time
� Increases Processor Utilization
� Maximum resource utilization leads to maximum

throughput.
� Ensures that no server is overwhelmed

For any Load Balancing Algorithm, there are three
major parameters that define the strategy[1]:

i. Who makes the load balancing decision ?
ii. What information is used to make the load

balancing decision ?
iii. Where the load balancing decision is made ?

The first question classifies the technique into two
types: Sender-initiated and Receiver-initiated. In

sender-initiated strategy, highly loaded nodes search
for lightly loaded nodes and in receiver-initiated
strategy, lightly loaded nodes search for highly
loaded nodes.

The second question again classifies the technique
into two types: Global and Local. In global strategy,
all nodes in the network are considered while
searching for lightly loaded node and in local
strategy, nodes are divided into groups and balancing
decision is made locally.

The third question classifies the technique into two
types: Centralized and Distributed. In centralized
strategy, all nodes share their load information with
one single node which makes the load balancing
decision and in distributed strategy, all nodes perform
a broadcast of their load information and each node
makes the balancing decision.

2. TYPES OF LOAD BALANCING
ALGORITHMS

Depending upon the basis of number of processes
and load in the system, the load balancing algorithms
can be categorized into two types:

2.1 Static Load Balancing:

Static Load Balancing is performed when the system
load and number of processes is fixed and known at
compile time. All parameters are fixed for the
system. Static Load Balancer makes balancing
decision on the basis of average workload of the
system. Hence the Static Load Balancing takes less
time to execute and is simpler. But it is not suitable

International Journal of Research in Advent Technology, Vol.2, No.4, April 2014
E-ISSN: 2321-9637

330

for the environments with changing workloads.
Hence, a dynamic approach is required.

2.2 Dynamic Load Balancing:

Dynamic Load Balancing is performed when the
system load and number of processes is likely to
change at run time. In this case, there is a need of
consistently monitoring the system load. This
increases the overhead and makes the system more
complex. Dynamic Load Balancer makes balancing
decision on the basis of current state of the system.

Hence Static Load Balancing is simpler, faster and
cost-effective than Dynamic Load Balancing but is
not suitable for the system with changing workloads.
Therefore, Dynamic approach is much more efficient
for distributed networks.

3. ISSUE IN DESIGNING LOAD
BALANCING ALGORITHMS:

There are several issues to be considered while
designing a load balancing algorithm. These are
discussed briefly in[3]:

3.1. Load Estimation Policy

A node’s workload can be estimated by following
parameters

− Total no. of processes at the node
− Resource demand of these processes
− Instruction mixes of these processes
− Architecture and speed of node’s processor
− Sum of remaining service times of all the

processes in the networks

3.2. Process Transfer Policy

These are the policies used to decide whether the
node is heavily loaded or lightly loaded. This is done
by deciding a threshold value for the workload. These
are of two types: Static and Dynamic. In Static
policy, there is a predefined threshold value for each
node which does not vary with dynamic changes in
the workload. In dynamic policy, threshold value is
calculated as a product of average workload of all the
nodes and a predefined constant C. C depends on the
processing capability of a node relative to processing
capability of all other nodes. Threshold policies are
used to decide the region to which node belongs.

3.3. Location Policy

These policies are used to select the destination node
for the process’s execution. We can adopt either of
the following types of location policies:

3.3.1. Threshold policy: A node is selected at random
and a check is made to determine whether the transfer
to that node leads it to an overloaded condition, if
not, the process is transferred to that node, if yes,
then another node is selected at random and probed in
the same way until a probe limit L is reached.

3.3.2. Shortest Policy: In this, L distinct nodes are
chosen at random and each is polled to determine its
load. The process is transferred to the node with
minimum load value.

3.3.3. Bidding Policy: In this, each node can be either
a contractor or a manager. Manager is the node
having a process to be transferred; Contractor is the
node that is able to accept a remote process. Manager
broadcasts request-for-bid messages to all the nodes
in the network, and then the contractor nodes return
the bids to manager. The manager then chooses the
best bid and transfers the process to the winning
contractor node.

3.3.4. Pairing Policy: In this, two nodes with greatly
varying loads are selected and paired and load
balancing is carried out between them, several such
pairs may be created in a network. The processes to
be migrated are selected by comparing their expected
completion time on the current node to that on the
partner node, including the migration delay. During
the time a pair is in force, both members will reject
any other pairing requests.

3.4. State Information Policy

Several policies can be adopted to exchange node
state information among the nodes in the network.

3.4.1. Periodic Broadcast: In this, each node
broadcasts its state information to after every t units
of time. But this process has certain demerits; it
increases the traffic, may result into fruitless
messages and it is not scalable at all.

3.4.2. Broadcast when state changes: In this, a node
broadcasts its state information only when its state
changes. This can be even improved by observing
that is not necessary to report every small change,
rather it should broadcast only when it can participate
in the load balancing process.

3.4.3. On-Demand Exchange: In this, a node
broadcasts a StateInformationRequest message when
its state switches from normal load region to either
overloaded region or under loaded region. On
receiving this message, then other nodes send their

International Journal of Research in Advent Technology, Vol.2, No.4, April 2014
E-ISSN: 2321-9637

331

current state to the requesting node. This method can
be further improved if we include the status of the
requesting node in the request message and only
those nodes should reply that can contribute to the
load balancing process.

3.4.4. Exchange by polling: This method is adopted
to reduce the network traffic. In this, a node can
search for a contributing partner at random by polling
the other nodes one by one. Therefore, the state
information is exchanged only between the polling
node and the polled node.

3.5. Priority Assignment Policy

When the process migration has been accomplished
using the series of policies, there is a need to devise a
priority assignment rule to schedule local and remote
processes at a particular node. Any of the following
three rules can be adopted:

3.5.1. Selfish rule: In this, local processes are given
higher priority than remote processes, but this yields
the worst response time.

3.5.2. Altruistic rule: In this, remote processes are
given higher priority than local processes, and it
gives the best response time.

3.5.3. Intermediate rule: In this, the priority depends
on the no. of local or remote processes at that node. If
local processes are more than remote processes then
local processes are preferred, otherwise remote
processes are preferred.

3.6. Migration Limiting Policy

It is an important policy that decides “how many
times a process should be allowed to migrate?” Two
policies are there to decide this: Uncontrolled and
Controlled.

3.6.1. Uncontrolled: In this, remote process is treated
same as the local process and it is allowed to migrate
any no. of times, but this is instable.

3.6.2. Controlled: A stable approach is to distinguish
the remote process by a local process and use a
migration count to limit the no. of migrations. For
normal size processes the migration limit is generally
set to 1, and for large processes it can be set greater
than 1.

4. PROPOSED DESIGN

Our proposed design uses a clustered approach for
load balancing. Workstation clusters are being
recognized as the most promising computing
resource of the near future. A large-size cluster,
consisting of locally connected workstations, has

power comparable to a supercomputer, at a fraction
of the cost. Distributing the total computational load
across available processors is referred to as load
balancing [4].

Effective load-balancing of a cluster of computing
nodes in a distributed computing system relies on
accurate knowledge of the state of the individual
nodes. This knowledge is used to judiciously assign
incoming computational tasks to appropriate node,
according to some suitable load balancing
strategy[4].

In the proposed strategy, two concepts are mainly
referred.

In [1], there is a design with one Load Balancer
communicating with all the nodes and monitoring
their load. This load balancer reports the load to two
back-end servers. The servers finally make the
balancing decision and return the address of the
suitable node to which the overload should be
transmitted.

In [2], there is a different approach, it uses one
supporting node with each primary node and in case
of overload at node Ni, an interrupt service routine
generates an interrupt and the overload is transferred
to its supporting node and it also uses a priority
scheme, if the priority of the incoming process at the
supporting node is greater than that of the currently
running process, then the current process is
interrupted and assigned to a waiting queue and the
incoming process is allowed to run at the supporting
node. Otherwise the current process continues and
incoming process is in waiting state until the current
process is completed.

The proposed design uses a clustered approach in
which each cluster maintains three nodes and each
cluster has a supporting node. Each cluster maintains
a queue for to store the load of its nodes.The load
balancer maintains priorities of the process in the
system. This design reduces the cost of infrastructure
used in [2], and improves the service offered by [1]
by using clusters as the central load balancer has to
communicate with cluster manager rather than
individual nodes. Fig.1 illustrates the proposed
design.

4.1 Notations:

• Each cluster Ciconsists of 3 nodes.

• Each cluster Ci is associated with a supporting
node SNito balance the overload at the cluster.

International Journal of Research in Advent Technology, Vol.2, No.4, April 2014

• The nodes inside the cluster are denoted by
i.e. jth node of ith cluster

• For each cluster, there is a load queue
that stores the load of node Node

• There is a priority queue
processes arranged in order of their priorities.

Fig. 1: Proposed design for Load Balancing using cluster of three nodes

4.2 Description of Design:

• The Load Balancer comprises of three types of
servers: Load Monitoring Server
Reporting Server (LRS) and Decision Making
Server (DMS).

• A Load Reporting server is located at each node
to collect and report its load,
Node Nij in the Load queue Q
example, if loads at nodes of first clust
3; then the queue Q1 will be

2 4 3

• The Load Reporting Server at central load
balancer reports the load of all Supporting
Nodes.

• The Load Monitoring Server monitors the load
queue of each cluster and compare
maximum load threshold.

• We decide a maximum allowable load for the
nodes as the threshold. Suppose every node can

International Journal of Research in Advent Technology, Vol.2, No.4, April 2014
E-ISSN: 2321-9637

The nodes inside the cluster are denoted by Nij

For each cluster, there is a load queue Qiof size 3
that stores the load of node NodeNijatQij

There is a priority queue Pthat contains
processes arranged in order of their priorities.

• It also contains a waiting queue
the processes that are
waiting for processor
arranged in order of their priorities.

1: Proposed design for Load Balancing using cluster of three nodes

The Load Balancer comprises of three types of
servers: Load Monitoring Server (LMS), Load

and Decision Making

A Load Reporting server is located at each node
to collect and report its load, stores the load of

in the Load queue Qiat Qij. For
example, if loads at nodes of first cluster are 2, 4,

The Load Reporting Server at central load
balancer reports the load of all Supporting

The Load Monitoring Server monitors the load
compares the load with

We decide a maximum allowable load for the
. Suppose every node can

withstand a load of 5 units without any
degradation in the performance.

• In this case, whenever any element of queue gets
over the maximum specified load, an interrupt is
generated and the Load Balancer makes the
balancing decision and transfers the overload to
the suitable supporting node.

• If a supporting node is free then the overload is
transferred to it, otherwise the priority of the
currently running process and that of the
incoming process is compared by the Decision
Making Server (DMS).

• If the incoming process has higher priority, then
the currently running process is interrupted and
inserted to waiting queue
process is allowed to execute on
the current process continues to run and the
incoming process is inserted to the waiting
queue.

• The waiting is queue i
the waiting processes are scheduled.

International Journal of Research in Advent Technology, Vol.2, No.4, April 2014

332

It also contains a waiting queue Wthat contains
the processes that are currently interrupted and
waiting for processor. These processes are also
arranged in order of their priorities.

1: Proposed design for Load Balancing using cluster of three nodes

withstand a load of 5 units without any
ion in the performance.

In this case, whenever any element of queue gets
over the maximum specified load, an interrupt is
generated and the Load Balancer makes the
balancing decision and transfers the overload to

supporting node.

supporting node is free then the overload is
transferred to it, otherwise the priority of the
currently running process and that of the
incoming process is compared by the Decision
Making Server (DMS).

If the incoming process has higher priority, then
currently running process is interrupted and

inserted to waiting queueWiand the incoming
process is allowed to execute on SNi.Otherwise,
the current process continues to run and the
incoming process is inserted to the waiting

is queue is checked periodically and
the waiting processes are scheduled.

International Journal of Research in Advent Technology, Vol.2, No.4, April 2014
E-ISSN: 2321-9637

333

5. CONCLUSION

The above presented algorithm works well and
ensures that no process suffers starvation and no
processor is overwhelmed. The presented design
works for cluster with number of nodes=3. We are
planning to design a modified approach to work for
‘n’ number of clusters. The optimization of algorithm
is another task for future research. As the era of
distributed networks and systems increasingly comes
into practice, the demand for more organized and less
complex structures rises. The presented design is
likely to facilitate such demand in an easy way and
lesser implementation cost.

References

[1] Ankush P. Deshmukh, Prof. KumarswamyPamu,
Applying Load Balancing: A Dynamic
Approach,International Journal of Advanced
Research in Computer Science and Software
Enginnering, Volume 2, Issue 6, June 2012

[2] Parveen Jain, Daya Gupta,An Algorithm for
Dynamic Load Balancing in Distributed Systems
with Multiple Supporting Nodes by Exploiting
the Interrupt Service, International Journal of
Recent Trends in Engineering, Vol 1, No. 1, May
2009

[3] RutujaJadhav, SnehalKamlapur, I Priyadarshini,
Performance Evaluation in Distributed System
using Dynamic Load Balancing,International
Journal of Applied Information systems(IJAIS)–
ISSN:2249-0868, Volume 2, No.7, February
2012

[4] JeanGhanem, Implementation of Load Balancing
Policies in Distributed Systems, The University
of New Mexico Albuquerque, New Mexico, June
2004

[5] Ahmad Dala’ah, A Dynamic Sliding Load
Balancing Strategy in Distributed Systems, The
International Journal of Information Technology,
Vol 3, No.2, April 2006.

[6] Mayuri A. Mehta, Designing an Effective
Dynamic Load Balancing Algorithm Considering
Imperative Design Issues in Distributed Systems,
International Conference on Communication
Systems and Network Technologies 2012 IEEE.

[7] Sandeep Sharma, Sarabjit Singh, Meenakshi
Sharma, Performance Analysis of Load
Balancing Algorithms, World Academy of
Science, Engineering and Technology 14 2008

[8] Yong Meng TEO, Rassul AYANI, Comparison
of load balancing strategies on cluster-based

web servers, Transactions of the
SocietyforModeling and Simulation, 2001

[9] Mayuri A. Mehta, Devesh C. Jinwala, Analysis
of Significant Components for Designing an
Effective Dynamic Load BalancingAlgorithm in
Distributed Systems, Third International
Conference on Intelligent Systems Modelling
and Simulation, 2012

[10] Hao Jiang, Luo, Feng, Tang, Yin, DALB: A
Dynamic Application-sensitiveLoad Balancing
Algorithm, International Conference on
Computer Science and Service System, 2012

